Pashupati - Comprehensive Notes on Linear Algebra

1 Vectors and their Operations

Vectors are everywhere, in pretty much every STEM field, economics,
and even graphic design, but the true definition of a vector is a little too
complicated—at least, assuming no experience with the purer side of math—
for me to give you as a first chapter.

Unfortunately, it seems I must do what I hate most: give only half of
a definition at a time. For now, we’ll start with something more intuitive,
the most well-known example of a vector (which, for convenience, will be
referenced simply as a vector).

In this chapter, we’ll cover the basics: how vectors can be added, scaled,
and subtracted, and we’ll explore operations like the dot and cross products.
We’'ll also touch on how vectors can be broken down into components and
their magnitudes, all without getting too abstract just yet. By the end of this
chapter, you’ll have a solid grasp on how to work with vectors in the most
straightforward ways. So, let’s dive in!

1.1 Definition and properties

You might be thinking: what ezactly is a vector? (If you've already heard
of them, I'd still encourage reading this chapter to refresh yourself.) Well, to
understand what a vector is, let’s go back to something we’re more familiar
with: the real numbers.

The set of real numbers (henceforth denoted as R) contains elements such
as 3, —20, %, 0.00002307, and 2. Now, what do they have in common?
Think about the notable things a number is defined by.

One thing that might come to mind is their distance from zero, otherwise
known as the absolute value of that number. This gives us a sense of how
large that number is. 10 is greater than 9, which is greater than 8.9, which
is greater than /8.9, and so on. A loss of $10.01 is worse than a loss of $10
because its absolute value, its magnitude, is greater.

Another thing that all real numbers have is a sign: + or — (well, except for
zero). The sign of a number tells us which size of zero it is on, the difference
between left and right, the direction of the number.

Of course, there are a lot of other things we could say (even vs. odd,
rational vs. irrational), but let’s stick to magnitude and direction. While
there are infinitely many magnitudes a number can have in R, there are really
only two directions, confining us to a single dimension. Try and remember
how we went from a single direction to two.
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That’s right, the x-y plane. Now, we're working with points like (3,2),
(7.07,—1n(5)), etc. Our zero in one dimension now becomes the point (0,0),
called the origin, and we can define the magnitude of a point as its distance
from the origin, just like the absolute value sign gives us the distance from
our number to zero.

Redefining direction is a little trickier. Our first instinct might be to keep
using positive and negative signs. A number was positive if it was to the
right of zero on a number line, and negative if it was on the left. On an z-y
plane, there are actually two zeroes that a point can be above/to the left of
or below/to the right of. Two zeroes times two choices for placement gives us
four quadrants (top-right, top-left, bottom-left, and bottom-right relative to
the origin) that we can put our points in.

However, there’s a problem with calling those four quadrants directions.
On a line (one dimension), you can really only go forwards and backwards.
The amount by which you do so may differ, but that’s part of the magnitude
and not the direction. However, on a plane (two dimensions), there are a lot
more ways you can move than simply up, down, left, or right.

It’s not too hard to demonstrate this. Convince yourself that moving in
a flat room, so long as you don’t jump, confines you to a two-dimensional
plane. Take wherever you're currently standing as the origin of that plane,
and the direction you’re looking in as the positive z-axis. Turning 180 degrees
in either direction will then have you facing the negative x-axis. From there,
turning 90 degrees in both directions will give you the positive and negative
y-axes. These can be called up, down, left, and right. However, it shouldn’t
be hard to move in a direction that isn’t simply one of those four.

We can see now that quadrants, defined by positive and negative signs,
won’t be enough to adequately define the direction of a point relative to the
origin. They simply aren’t precise enough. What might be a better way to
denote direction? (HINT: I used it in the above paragraph.)

If you were thinking degrees (radians are also acceptable, but I won’t use
those for now), you're correct. Let’s say that anything on the positive z-
axis has a direction of zero degrees. We know that the x and y-axes are
perpendicular, so anything on the positive y-axis will have a direction of 90
degrees. Similarly, the negative x and y-axes will have directions of 180 and
270 degrees. Then, no matter how much we spin on the origin, our direction
can always be represented as some amount of degrees.

Now, we finally have enough background to define a vector (or at least,
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the most basic example of one).

Definition 1.1.1. A Euclidean vector in n dimensions is a mathematical
object (denoted (x1,xa, ..., x,)) with magnitude and direction.

As the chapter progresses, we’ll be adding more to this definition. For now
though, let’s see some examples of 2D vectors (such vectors are said to be in
R?, basically saying that it has two components and both of them must be
real numbers).

e= <\/§,3>

b= (-m,2)
a=(v2,1.5)

f=(-3 1)

d=(-v2-2) ¢ = (V3,~VB)

As you can see, a Euclidean vector (z,y) is basically an arrow going from
the origin to the point (x,y). The magnitude of a vector is therefore the length
of the arrow, and it’s direction is the angle between it and the positive x-axis
(it’s standard to measure angles in this way, and that’s how I'll be doing so
unless explicitly stated otherwise). To find the magnitude, simply use the
distance formula:

d=+/(z2 —21)2 + (y2 — y1)?

In this case, the point (z1,y1) is the origin and therefore the distance
formula can be simplified to the square root of the sum of the squares of the
x and y-coordinates.
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To find the direction of a 2D vector, simply remember trigonometry and
that the slope of a line (rise over run) equals the tangent of the angle the
line makes with the x-axis. Therefore, since every vector starts at the origin,
the slope is simply the y-component over the x-component, and we have the
following:

m = tan(6)

Yy
Z = tan(6
. an(6)

0 = arctan (g)
x
Finding the magnitude of vectors in higher dimensions (like R3 and R%)
is pretty simple: simply add the squares of all the components, then take the
square root. In n dimensions, the magnitude of a vector v = (x1, xa, ..., T,) is
as follows:

d:\/x%—i—x%—i—...—f—x%

Once again, direction of vectors in higher dimensions isn’t that simple,
represented by special unit vectors, which will be explained later in the chap-
ter.

On the other hand, it’s pretty easy to do vectors in one dimension. The
magnitude of some vector v = (x) is just Va2 = |z|, and it can only point
in the positive or negative direction. This sounds pretty familiar. That’s
because it acts exactly like the real numbers, we're just looking at it in a
different context.

Vectors, like numbers, aren’t tied to any specific units. They can rep-
resent things like forces, velocities, and accelerations just like real numbers
can. However, real numbers can only give us the magnitude of whatever it is
they’re quantifying. I can say I’'m pushing a box with a force of 4 Newtons,
but that doesn’t tell you what direction I'm pushing the box. It’s when I say
I'm pushing that box with a force of 4 Newtons 30° relative to true north,
when I'm giving you a vector representing the force, that you can know both
magnitude and direction.

That brings us to the end of this section. In the next one, we’ll define
common operations like addition and subtraction in the context of vectors,
and also look at how to scale them.
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